

MEIC 2020/2021

Data Administration in Information Systems 2nd semester

Lab 7: Schema Tuning

IST/DEI Page 1 of 8

In this lab class we will approach the following topics:

1. Schema Tuning
1.1. Denormalization by collapsing tables
1.2. Denormalization by adding redundant columns
1.3. Denormalization by adding derived attributes
1.4. Partitioning tables
1.5. Materialized views in SQL Server
1.6. Non-clustered indexes over derived attributes in SQL Server

2. Experiments and Exercises
2.1. Experiments with SQL Server
2.2. Exercises

1. Schema Tuning

Schema design is a very important aspect in what concerns performance tuning, as one should
consider the trade-offs among normalization and denormalization.

In a general sense, the objective of normalization is to decide which attributes end up in which
tables, thus minimizing update anomalies and maximizing data accessibility. Although
normalization is generally regarded as a rule in relational database design, there are still times
when database designers may turn to denormalizing a database in order to enhance
performance and ease of use. A full normalization results in a number of logically separate
relations that, in turn, result in physically separate stored files. Join processing over normalized
tables requires an additional amount of system resources.

Denormalization can be described as a process for reducing the degree of normalization, with
the aim of improving query processing performance. One of the main purposes of
denormalization is to reduce the number of joins needed to derive a query answer, by reducing
the number of physical tables that must be accessed to retrieve the desired data. Denormalization
may boost query speed, but also degrade data integrity due to redundancies. The
denormalization process can easily lead to data duplication that, in turn, leads to update anomaly
issues requiring increased database storage requirements.

Common schema optimization (or tuning) techniques revolve around collapsing tables, splitting
tables, adding redundant columns, or adding derived columns.

1.1. Denormalization by Collapsing Tables

One of the most common and secure denormalization techniques consists of collapsing one-to-
one relationships (see Figure 1). This situation occurs when for each row of relation TB1, there is
only one related row in relation TB2. While the key attributes of the two relations may or may
not be the same, their equal participation in a relationship indicates that they can be treated as a

Data Administration in Information Systems

IST/DEI Page 2 of 8

single unit. There are several advantages of this technique in the form of reduced number of
foreign keys on tables, reduced number of indexes (since most indexes are created based on
primary/foreign keys), reduced storage space, and reduced amount of time for data modification.

Figure 1: Collapsing one-to-one relationships.

A many-to-many relationship can also be a candidate for table collapsing. The typical many-to-
many relationship is represented in the physical database structure by three tables: one table for
each of two primary entities and another table for cross-referencing them. These three tables can
be merged into two if one of the entities has little data apart from its primary key (i.e., there are
not many functional dependencies with the primary key). Such an entity could be merged into
the cross-reference table by duplicating the attribute data.

There is, however, a drawback of this second approach. Update anomalies may occur when the
merged entity has instances that do not have any corresponding entries in the cross-reference
table. Collapsing the tables in both one-to-one and one-to-many eliminates the join, but there
may be a significant loss at the abstract level because there is no conceptual separation of the
data. In general, collapsing tables involved in many-to-many relationship has a significant number
of problems when compared to other denormalization approaches.

1.2. Denormalization by Adding Redundant Columns

Adding redundant columns (i.e., vertical anti-partitioning) can be used when a column from one
table is being accessed in conjunction with a column from another table. If this occurs frequently,
it may be necessary to combine the data and carry them as redundant.

Reference data, which relates sets of codes in one table and descriptions in another, is a natural
example where redundancy can pay off. Instead of obtaining a description of a code via a join, a
typical strategy is to duplicate the descriptive attribute in the table where the code is stored. The
result is a redundant attribute in that table that is functionally independent of the primary key.
Figure 2 provides an illustration.

Data Administration in Information Systems

IST/DEI Page 3 of 8

Figure 2: Denormalization by adding redundant columns.

1.3. Denormalization by Adding Derived Attributes

Applications often require the frequent use of data calculated from information stored in the
database. On large volumes of data, even simple calculations can consume a substantial
processing time.

Storing derived data in the database can substantially improve performance by saving both CPU
cycles and data read time, although it violates normalization principles. An example application
is the maintenance of aggregate values. Storing derived data can help to eliminate joins and
reduce time-consuming calculations at runtime. However, maintaining data integrity can be
complex if the data items used to calculate a derived data item change unpredictably or
frequently, as the new value for derived data must be recalculated each time a component data
item changes. Thus, the frequency of access, required response time, and increased maintenance
costs must be considered.

1.4. Partitioning Tables

When distinct parts of a table are used by different applications, the table may be split into
distinct tables, either vertically or horizontally. Figure 3 illustrates both these approaches.

A vertical split involves splitting a table by columns so that a group of columns is placed into one
table and the remaining columns are placed into a second table. Vertical splitting can be used
when some columns are rarely accessed or when the table has a large number of columns. The
result of splitting a table is a reduction of the number of pages/blocks that need to be read
because of the shorter row length in each table. With more rows per page, I/O is decreased when
large numbers of rows are accessed in physical sequence. A vertically split table should contain
one row per primary key in the split tables, as this facilitates data retrieval across tables. In
practice, a view of the joined tables may make this split transparent to the users.

Data Administration in Information Systems

IST/DEI Page 4 of 8

Figure 3: Horizontal and vertical table partitioning.

A horizontal split involves splitting a table by rows (i.e., by key ranges). This can be used when a
table is large in terms of the number of stored rows. A horizontal split is usually applied when the
table split corresponds to a natural separation of the rows such as different geographical sites, or
historical versus current data. It can be used when there is a table that stores a large amount of
rarely used historical data, and when there are applications that require a quick result obtained
from that table. Reducing the size of the table reduces the number of pages analyzed during a
table scan, and it can also reduce the number of index pages read in a query. A horizontal table
scan can lead to fewer levels of a B+tree structure, thus reducing the number of disk reads that
are required.

It is important to note that a database designer, when performing a horizontal split, must be
careful to avoid duplicating rows in the new tables so that a “UNION ALL” may not generate
duplicated results when applied to the two new tables.

In general, horizontal splitting adds a high degree of complexity to applications. Consider that it
usually requires different table names in queries, according to the values in the tables. This
complexity alone usually outweighs the advantages of table splitting in most database
applications.

SQL Server has several database partitioning enhancements to improve performance and
reduce the administrative overhead involved with managing partitioned data sets. In SQL
Server, you can create a partition function, and then a partitioned table or index using this
function (see Lab 1). SQL Server will handle the distribution of data ranges to the different
partitions according to the range function. This will look like a single table. For performance
reasons, it may be better to have the partitioned table span multiple file groups (possibly on
different disks or arrays) with each partition allocated to its own file group. It is also possible to
create partitioned indexes. By default, indexes created on a partition will use the same
partitioning scheme as the partitioned table.

Data Administration in Information Systems

IST/DEI Page 5 of 8

1.5. Materialized views in SQL Server

Using views can help to reduce the drawbacks of schema tuning. Views are virtual tables that
are defined as a database object whose definition is based on other items stored in the database.
Since no data is stored in the view, the integrity of the data is not an issue. Also, because data is
stored only once, the amount of disk space required is minimal.

Most DBMSs process view definitions at run time, so a view does not solve performance issues.
However, SQL Server supports the notion of materialized views. In SQL Server, these are also
called indexed views because they have a unique clustered index created on them. There can
also exist non-clustered indexes created over the view, so long as it a unique clustered index has
been created over it.

Through materialized views, we can have the performance advantages of schema tuning, without
the data consistency issues (i.e., the logical schema of the database does not change, thus
avoiding consistency issues, but the automatically updated views provide efficient data access).
Materialized views are particularly interesting to support derived attributes and redundant
columns. Vertical partitioning can also be supported through materialized views, although non-
clustered indexes including the attributes used in the query should be a more interesting option.

1.6. Non-Clustered Indexes Over Derived Attributes in SQL Server

In SQL Server, it is possible to create tables involving the usage of derived attributes (i.e.,
attributes whose values are computed from other attributes, using arithmetic calculations,
algorithms or procedures). For example, in a relation storing bank accounts, an attribute
corresponding to the net cash balance can be derived by adding all deposits and subtracting all
disbursements or payments made. The values for the derived attributes are normally computed
at query time but, to speed up query processing, it may be interesting to create non-clustered
indexes involving the derived attributes in the index key.

In SQL Server, it is possible to define indexes on computed attributes, as long as the expressions
used to compute the derived attribute are deterministic (i.e., if they always return the same
output for the same inputs). This way, the values for the derived attributes become materialized
in the database, and we no longer need to compute them at query time.

Remember also that, in SQL Server, it is possible to use the INCLUDE option in the CREATE INDEX
statement to add one or more columns (e.g. regular attributes or derived attributes that are
deterministic) to the leaf level of a non-clustered index, instead of including additional attributes
in the search key for the index. This way, indexes can be kept smaller, but we can nonetheless
cover the attributes used in the query and execute the query only through accesses to the non-
clustered indexes, thus avoiding accesses to the underlying relation.

Data Administration in Information Systems

IST/DEI Page 6 of 8

2. Experiments and Exercises

2.1. Experiments

As mentioned earlier, materialized (i.e. indexed) views can be used to reduce the drawbacks of
schema tuning. In this experiment, we will analyze the usage of indexed views in SQL Server. In a
previous lab (Lab 1), you have already seen how to use horizontal database partitioning using the
mechanisms provided by SQL Server.

It is important to note that the SQL Server query processor treats indexed and non-indexed views
differently. If the query optimizer decides to use an indexed view in a query plan, the indexed
view is treated the same way as a base table (i.e., the tuples returned by the view are persistently
stored in the database, given that an index has been created over the view). As for non-indexed
views, only their definition is stored, and not the rows of the view. In this case, the query optimizer
incorporates the logic from the view definition (i.e., it replaces the invocation to the view by the
query that corresponds to the view definition), this way building an execution plan for the SQL
statement that references the non-indexed view.

Consider, for example, the following view, which collapses two tables having a one-to-one
relationship:

CREATE VIEW EmployeeName WITH SCHEMABINDING AS
SELECT e.BusinessEntityID, p.LastName, p.FirstName
FROM HumanResources.Employee e JOIN Person.Person p
 ON e.BusinessEntityID = p.BusinessEntityID;

When SCHEMABINDING is specified, the base table or tables cannot be modified in a way that
affects the view definition (for example, it is forbidden to execute an “ALTER TABLE” statement
to remove the attributes of the base tables that are used within the view). The view definition
itself must first be modified or dropped and only afterwards, the base tables can be modified.

Execute the statement above to create the view. Then execute each of the following SQL
statements, which should produce the same results:

-- select using the view
SELECT LastName AS EmployeeLastName, SalesOrderID, OrderDate
FROM Sales.SalesOrderHeader AS soh JOIN EmployeeName as EmpN
 ON soh.SalesPersonID = EmpN.BusinessentityID
WHERE OrderDate > 'January 1, 2013';

-- select using the base tables
SELECT LastName AS EmployeeLastName, SalesOrderID, OrderDate
FROM Sales.SalesOrderHeader AS soh
 JOIN HumanResources.Employee as e
 ON soh.SalesPersonID = e.BusinessEntityID
 JOIN Person.Person as p
 ON e.BusinessEntityID = p.BusinessEntityID
WHERE OrderDate > 'January 1, 2013';

Data Administration in Information Systems

IST/DEI Page 7 of 8

Display the execution plan for the two queries above. Looking at the execution plan, you will see
that the engine is accessing the base tables in both cases. This is because the engine is replacing
the view by its definition in the first query, which becomes equivalent to the second query.

SQL Server will choose a different execution plan if the view is materialized. For this purpose,
create the following index to turn the view into an indexed (i.e. materialized) view:

CREATE UNIQUE CLUSTERED INDEX IDX_V1
ON EmployeeName (BusinessEntityID, LastName, FirstName);

Repeat the previous two queries and check the resulting execution plans. The view is now
materialized, and the engine uses it in the first query. Since a materialized view is now available,
the engine also uses it to optimize the second query.

Indexed views can also be used to implement the maintenance of aggregate values. Consider the
following example:

CREATE VIEW Sales.vOrders WITH SCHEMABINDING AS
SELECT SUM(UnitPrice*OrderQty*(1.00-UnitPriceDiscount)) AS Revenue,
 OrderDate, ProductID, COUNT_BIG(*) AS Counting
FROM Sales.SalesOrderDetail AS sod, Sales.SalesOrderHeader AS soh
WHERE sod.SalesOrderID = soh.SalesOrderID
GROUP BY OrderDate, ProductID;

CREATE UNIQUE CLUSTERED INDEX IDX_V2
ON Sales.vOrders (OrderDate, ProductID);

The following query will use the indexed view, even though the view is not specified directly in
the FROM clause:

SELECT SUM(UnitPrice*OrderQty*(1.00-UnitPriceDiscount)) AS Rev,
 OrderDate, ProductID
FROM Sales.SalesOrderDetail AS sod, Sales.SalesOrderHeader AS soh
WHERE sod.SalesOrderID = soh.SalesOrderID
 AND ProductID BETWEEN 700 and 800
 AND OrderDate > 'January 1, 2013'
GROUP BY OrderDate, ProductID
ORDER BY Rev DESC;

Run the query above and check its execution plan.

Besides materializing the view through the creation of a clustered index, we can also define a
non-clustered index over some of the attributes of the view, including derived attributes such as
Revenue from the previous example.

CREATE NONCLUSTERED INDEX NEW_IDX_V2
ON Sales.vOrders (Revenue)
INCLUDE (ProductID);

Data Administration in Information Systems

IST/DEI Page 8 of 8

This non-clustered index can be particularly useful to optimize queries involving only some of the
attributes, leading to index-only plans. An example would be:

SELECT ProductID FROM Sales.vOrders WHERE Revenue > 1000;

Run the query above and check its execution plan.

2.2. Exercises

Consider the following relational database schema:

Clients(ClientId, ClientName)
Activities(ActivityId, ActivityName, ActivityType)
Employees(EmployeeId, EmployeeName)
Projects(ProjectId, ProjectName, ClientId)

ClientId : FK(Clients)
TimeSheet(ProjectId, ActivityId, EmployeeId, Date, Hours)

ProjectId : FK(Projects)
ActivityId : FK(Activities)
EmployeeId : FK(Employees)

2.2.1 – For each of the following cases and, assuming that all the corresponding queries execute
very frequently, indicate a possible optimization at the schema level (e.g., addition of new
attributes to the existing relations, creation of new relations, partitioning of relations, etc.):

a) Queries that compute the total time spent on each project.
b) Queries that retrieve the names of activities and employees involved in a given project.
c) Queries that retrieve the IDs of activities that take more than 5 hours to be executed.
d) Queries that retrieve the names of the activities of type “simple” (activities may be

“simple” or “complex”).

2.2.2 – For each case considered above, explain what is the benefit brought by the schema
optimization technique suggested, and indicate a potential problem that may be introduced by
the use of the schema optimization technique suggested.

2.2.3 – Explain how the following mechanisms supported by SQL Server can be useful to optimize
queries without some of the drawbacks associated with schema tuning:

a) Materialized views.
b) Partition functions and partition schemes.
c) Derived attributes and indexes on derived attributes.
d) Indexes that include additional attributes (regular or derived) beyond the search key.

